Understanding short-horizon bias in stochastic meta-optimization. Lectures will be delivered synchronously via Zoom, and recorded for asynchronous viewing by enrolled students. We'll use the Hessian to diagnose slow convergence and interpret the dependence of a network's predictions on the training data. Lage, E. Chen, J. I recommend you to change the following parameters to your liking. This is a tentative schedule, which will likely change as the course goes on. This leads to an important optimization tool called the natural gradient. Borys Bryndak, Sergio Casas, and Sean Segal. Understanding Black-box Predictions via Influence Functions Background information ICML 2017 best paper Stanford Pang Wei Koh CourseraStanfordNIPS 2019influence function Percy Liang11Michael Jordan Abstract We'll consider the two most common techniques for bilevel optimization: implicit differentiation, and unrolling. Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and Tygar, J. Adversarial machine learning. ICML 2017 best paperStanfordPang Wei KohPercy liang, x_{test} y_{test} label x_{test} , n z_1z_n z_i=(x_i,y_i) L(z,\theta) z \theta , \hat{\theta}=argmin_{\theta}\frac{1}{n}\Sigma_{i=1}^{n}L(z_i,\theta), z z \epsilon ERM, \hat{\theta}_{\epsilon,z}=argmin_{\theta}\frac{1}{n}\Sigma_{i=1}^{n}L(z_i,\theta)+\epsilon L(z,\theta), influence function, \mathcal{I}_{up,params}(z)={\frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon}}|_{\epsilon=0}=-H_{\hat{\theta}}^{-1}\nabla_{\theta}L(z,\hat{\theta}), H_{\hat\theta}=\frac{1}{n}\Sigma_{i=1}^{n}\nabla_\theta^{2} L(z_i,\hat\theta) Hessien, \begin{equation} \begin{aligned} \mathcal{I}_{up,loss}(z,z_{test})&=\frac{dL(z_{test},\hat\theta_{\epsilon,z})}{d\epsilon}|_{\epsilon=0} \\&=\nabla_\theta L(z_{test},\hat\theta)^T {\frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon}}|_{\epsilon=0} \\&=\nabla_\theta L(z_{test},\hat\theta)^T\mathcal{I}_{up,params}(z)\\&=-\nabla_\theta L(z_{test},\hat\theta)^T H^{-1}_{\hat\theta}\nabla_\theta L(z,\hat\theta) \end{aligned} \end{equation}, lossNLPer, influence function, logistic regression p(y|x)=\sigma (y \theta^Tx) \sigma sigmoid z_{test} loss z \mathcal{I}_{up,loss}(z,z_{test}) , -y_{test}y \cdot \sigma(-y_{test}\theta^Tx_{test}) \cdot \sigma(-y\theta^Tx) \cdot x^{T}_{test} H^{-1}_{\hat\theta}x, \sigma(-y\theta^Tx) outlieroutlier, x^{T}_{test} x H^{-1}_{\hat\theta} Hessian \mathcal{I}_{up,loss}(z,z_{test}) resistencevariation, \mathcal{I}_{up,loss}(z,z_{test})=-\nabla_\theta L(z_{test},\hat\theta)^T H^{-1}_{\hat\theta}\nabla_\theta L(z,\hat\theta), Hessian H_{\hat\theta} O(np^2+p^3) n p z_i , conjugate gradientstochastic estimationHessian-vector productsHVP H_{\hat\theta} s_{test}=H^{-1}_{\hat\theta}\nabla_\theta L(z_{test},\hat\theta) \mathcal{I}_{up,loss}(z,z_{test})=-s_{test} \cdot \nabla_{\theta}L(z,\hat\theta) , H_{\hat\theta}^{-1}v=argmin_{t}\frac{1}{2}t^TH_{\hat\theta}t-v^Tt, HVPCG O(np) , H^{-1} , (I-H)^i,i=1,2,\dots,n H 1 j , S_j=\frac{I-(I-H)^j}{I-(I-H)}=\frac{I-(I-H)^j}{H}, \lim_{j \to \infty}S_j z_i \nabla_\theta^{2} L(z_i,\hat\theta) H , HVP S_i S_i \cdot \nabla_\theta L(z_{test},\hat\theta) , NMIST H loss , ImageNetInceptionRBF SVM, RBF SVMRBF SVM, InceptionInception, Inception, , Inception591/60059133557%, check \mathcal{I}_{up,loss}(z_i,z_i) z_i , 10% \mathcal{I}_{up,loss}(z_i,z_i) , H_{\hat\theta}=\frac{1}{n}\Sigma_{i=1}^{n}\nabla_\theta^{2} L(z_i,\hat\theta), s_{test}=H^{-1}_{\hat\theta}\nabla_\theta L(z_{test},\hat\theta), \mathcal{I}_{up,loss}(z,z_{test})=-s_{test} \cdot \nabla_{\theta}L(z,\hat\theta), S_i \cdot \nabla_\theta L(z_{test},\hat\theta).
Strivectin Super C Retinol Serum Before And After,
Shark Attack Roatan Honduras,
Articles U